l’inexistence des mathématiques musicales avant l’époque de pythagore, du moins en ociddent, n’a jamais empêché personne de jouer de la musique : un roseau percé de trous, une corde tendue pincée à différentes hauteurs, et aussi le chant, les boîtes sur lesquelles on peut battre des rythmes… tout cela existait déjà
tout commence avec la découverte qu’il existe une relation entre la longueur d’une corde vibrante et la
pythagore (en grec Πυθαγόρας pythagoras), né vers et mort vers , était un mathématicien, philosophe et astronome de la grèce antique. l’école pythagoricienne soutient l’idée d’une relation entre les nombres et l’ordre universel. la musique n’échappe pas à ce principe. il faut voir qu’avant pythagore, les notes
Vu sur ensemblepythagore.fr
Vu sur slideplayer.fr
Vu sur lerepairedessciences.fr
premier épisode de notre cycle “histoire de la musique” : l’antiquité et l’apport fondateur de pythagore en musique. préparezvous à une expérience mystique.
la gamme de pythagore la fabuleuse histoire des notes de musique.
pythagore est une figure multiforme et, bien qu’il n’ait laissé aucun écrit, son influence a été considérable. chef religieux (il avait été initié aux mystères égyptiens), philosophe, mathématicien, il introduisit dans la pensée la mystique du nombre et, par une série d’expériences célèbres, sut y rattacher la musique.
Vu sur lerepairedessciences.fr
Vu sur web.ac-corse.fr
Vu sur fr.cdn.v5.futura-sciences.com
en théorie de la musique occidentale, l’accord pythagoricien est un accord construit exclusivement sur des intervalles de quintes pures. il est caractérisé par sa tierce, dite pythagoricienne, de rapport on l’appelle communément « gamme pythagoricienne ». l’intervalle de quinte pure était l’intervalle considéré dans
l’harmonie des sphères ou musique des sphères est une théorie d’origine pythagoricienne, fondée sur l’idée que l’univers est régi par des rapports numériques harmonieux, et que les distances entre les planètes dans la représentation géocentrique de l’univers — lune, mercure, vénus, soleil, , jupiter, saturne,
sur les problèmes musicaux : pythagore, galilée, descartes, euler, pour n’en citer que quelquesuns. au cours de l’histoire, les échanges entre la musique et les mathématiques furent fréquents. dans certains cas, les mathématiques offrent un langage qui permet de décrire et de mieux comprendre certains aspects de la
nous avons fabriqués une lyre! en pinçant une corde tendue à la moitié on obtient un do (par exemple), en pinçant
Vu sur slideplayer.fr
Vu sur easyzic.com
Vu sur images.slideplayer.fr
Vu sur easyzic.com